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Abstract

Optimizers are critical to the performances of neural networks but are often used as black-box

optimizers because it is difficult to get a practical explanation of their advantages and disadvantages.

In this article, we first introduce the vanilla gradient descent in deep learning, and the most common

optimization algorithms with their motivation and category, such as: accelerated schemes and adaptive

learning rate schemes. Then we introduce some latest works in this field, Lookahead and multi-optimizer

combination. Finally, we summarize that theoretical analysis and practicality are the most important

indicators for choosing an optimizer.
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I. INTRODUCTION

Optimizers are critical to the performances of neural networks, once a task has been selected,

an architecture designed and a dataset assembled, one needs to train a neural network to make

it performant as most neural networks return random outputs in the absence of training. Thus, it

has long been understood that optimizers are a primordial component of deep learning and that

a good optimizer can drastically improve the performance of a given architecture [1].
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This article aims at providing the reader with intuitions about the behavior of different

algorithms for optimizing gradient descent that will help her put them to use. In Section II,

we define the models, problems, and optimizers in deep learning and their optimization process.

Subsequently, in Section III, we are first going to look at how to introduce vanilla gradient

descent into deep learning and summarize the challenges of its variants. Then we introduce

the most common optimization algorithms and their extensions by showing their motivation to

resolve these challenges and how this leads to the derivation of their update rule. Moreover, in

Section IV, we present the new work Lookahead [2] proposed by Hinton et al. in 2019 and

one of the latest directions, the multi-optimizer combination. Afterward, we briefly analyze the

possible shortcomings of the current state-of-the-art optimization methods, and summarize that

theoretical analysis and practicality are the most important indicators for choosing an optimizer.

Optimizers in deep learning
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Fig. 1: Overview of optimizers of deep learning introduced in this article. Best viewed in color.

II. PROBLEM FORMULATION

A. Deep Neural Networks

Deep learning models represented by Deep Neural Networks (DNNs) [3], [4] have been

successfully applied to various applications, such as Computer Vision [5]–[7], Natural Language
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Processing [8]–[10], and Reinforcement Learning [11]–[13]. Typically, their models fθ (·) with

parameters θ can be formally formulated as:

Z0 = X ; hl
(
Z l−1

)
= 1

Ỹ = fθ (X ) = σ
(
hl
(
σ
(
hl−1

(
· · ·σ

(
h1

(
Z0

))))))
,

(1)

where X and Ỹ is the input and output, respectively. And σ (·) is the activation function which

provide the necessary nonlinearity of the model to be able to learn complex representation [14].

Sigmod and Rectified Linear Unit (ReLU) [15], [16] are two of the most commonly used. There

can be formulated as:
Sigmod (x) =

1

1 + e−x

ReLU (x) = max (0, x)

(2)
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Fig. 2: The visualization examples of the features and the patch scores produced by our method.

We employ CAM for feature visualization and the baseline is EfficientNet-B3 [7] here. The red

box indicates the distressed area.

B. Model optimization problem

With the model fθ (·), we can formulate the optimization problem of it. The goal of this

optimization problem is that minimize the distance ℓ
(
Ỹ ,Y

)
between output of model Ỹ and

targets Y , where ℓ (·) is the distance metric function, which can also be called cost function.

Specifically, for regression and classification problems, ℓ (·) is often chosen to be the Mean

Squared Deviation (MSE) and Cross-entropy (CE), respectively. There can be formulated as:

MSE
(
Ỹ ,Y

)
=

∑(
Ỹ − Y

)2

CE
(
Ỹ ,Y

)
= −

∑
Y log Ỹ

(3)
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Finally, this optimization problem can be formulated as:

θ̂ ← argmin
θ

ℓ (fθ (X ) ,Y) . (4)

C. Optimizer definition

In general, we consider model optimization problems in the deep learning domain as complex

non-convex optimization problems. The problem does not have an analytical solution and needs

to be solved using heuristic, iterative methods which referred to as optimizer. Moreover, we

will not discuss algorithms that are infeasible to compute in practice for high-dimensional data

sets, e.g. second-order methods such as Newton [17]. Therefore, we can denote the optimizer

as O (θ, ℓ,X ,Y). The process of parameter update can be formulated as:

O (θ, ℓ,X ,Y) := θt+1 ← θt +∆θ (5)

III. STOCHASTIC GRADIENT DESCENT VARIANTS

Gradient Descent (GD) is one of the most popular algorithms to perform optimization and by

far the most common way to optimize neural networks [17]. The algorithm can be formulated

as:

OGD := θt+1 ← θt − η∇θℓ (fθ (X ) ,Y) (6)

where η is the learning rate, and it controls the step size of the parameter update in the direction

of the gradient.

In this section, we will first introduce Stochastic Gradient Descent (SGD), which introduces

GD into the optimization process of deep learning, and some challenges of it. Then we will

outline some algorithms that are widely used by the Deep Learning community to deal with

the aforementioned challenges. Finally, we will summarize these classical optimizers based on

SGD.

A. Stochastic Gradient Descent

Firstly, we will take a fresh look at this problem from a statistical perspective. The dataset

D ∈ {X ,Y} are sampled from the true unknown distribution p (x). Therefore, we can get the

formulation of ideal cost function and gradient:

ℓ (fθ (x)) = Ex [ℓ (fθ (x))] =

∫
p (x) ℓ (fθ (x)) dx

∇θℓ (fθ (x)) = ∇θEx [ℓ (fθ (x))] = Ex [∇θℓ (fθ (x))]

(7)
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Because the true distribution p (x) is not available, pioneers [18], [19] in the field introduce

Monte Carlo estimation and thus obtain the commonly used gradient expression:

X = {x1, x2, ..., xN} ,Y = {y1, y2, ..., yN}

Ex [∇θℓ (fθ (x))] ≈
1

M

M∑
i=1

∇θℓ (fθ (xi) , yi)
(8)

• When M = N , we term it Batch Gradient Descent.

• When M = 1, we term it Stochastic Gradient Descent.

• When M < N , we term it Mini-Batch Gradient Descent.

1) Batch Gradient Descent: Gradient Descent, namely Batch Gradient Descent (BGD), cal-

culates the gradient of the cost function (with respect to the parameter θ) for the entire training

dataset D ∈ {X ,Y}:

OBGD := θt+1 ← θt − η
1

N

∑
∇θℓ (fθ (X ) ,Y) (9)

Since we need to compute the gradient of the entire dataset to perform a single update,

Batch Gradient Descent can be very slow and intractable for datasets that do not fit in memory.

The batch gradient descent method also does not allow us to update our model online, i.e.,

with new examples online Of particular importance, Batch Gradient Descent is guaranteed to

converge to the global minimum for convex error surfaces and to a local minimum for non-convex

surfaces [17].

2) Stochastic Gradient Descent: Stochastic Gradient Descent (SGD) in contrast performs a

parameter update for each training example xi and target yi:

OSGD := θt+1 ← θt − η∇θℓ (fθ (xi) , yi) (10)

Batch Gradient Descent performs redundant calculations on large datasets because it recalculates

the gradient for similar examples before each parameter update. SGD eliminates this redundancy

by performing one update at a time. Therefore, it is usually much faster and can also be used

for online learning. SGD performs frequent updates with high variance, resulting in severe

fluctuations in the cost function, as shown in Figure 3.

Although the Batch Gradient Descent method converges to the minimum of the basin in which

the parameters are located, the fluctuation of SGD allows it to jump to new, possibly better, local

minima on the one hand. On the other hand, this eventually makes convergence to the minimum

difficult, since SGD jumps constantly. However, it has been shown that when we slowly decrease
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Fig. 3: Fluctuations in the total objective function as gradient steps. Source: [20].

the learning rate, SGD shows the same convergence behavior as Batch Gradient Descent, almost

certainly converging to a local or the global minimum for non-convex and convex optimization,

respectively [17].

3) Mini-Batch Gradient Descent: Mini-batch Gradient Descent (MBGD) eventually takes the

best of both and updates for each mini-batch of M training examples:

OMBGD := θt+1 ← θt − η
1

M

∑
∇θℓ (fθ (xi) , yi) (11)

This way, it a) reduces the variance of the parameter updates, which can lead to more stable

convergence; and b) can make use of highly optimized matrix optimizations common to state-

of-the-art deep learning libraries that make computing the gradient w.r.t. a mini-batch very

efficient [17]. Common mini-batch sizes range from 32 to 512, but may vary for different

applications. Mini-batch Gradient Descent is usually the preferred algorithm when training deep

neural networks. Unless mentioned, we regard Mini-Batch Gradient Descent as SGD in the

following sections.

4) Challenges: However, SGD does not guarantee good convergence, but provides a number

of challenges that need to be addressed:

• Choosing an appropriate learning rate is difficult. A learning rate that is too small can lead

to too slow convergence, while a learning rate that is too large can hinder convergence and

cause the loss function to fluctuate or even diverge around the minimum.
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• In addition, the same learning rate applies to all parameter updates. If our data is sparse and

our features vary widely in different dimensions, we may not want to update all features to

the same extent, but rather make larger updates to features that rarely occur.

• Another key challenge in minimizing the complex non-convex cost functions common to

neural networks is to avoid getting trapped in their numerous suboptimal local minima [17].

Dauphin et al. [21] argue that the difficulty actually comes not from local minima, but from

saddle points, i.e., points that slope upward in one dimension and downward in the other.

These saddle points are usually surrounded by a plateau of the same error, which makes it

difficult for SGD to escape, even if the gradients in all dimensions are close to zero.

B. Momentum and Nesterov Momentum

SGD has trouble navigating ravines, i.e. areas where the surface curves much more steeply in

one dimension than in another [22], which are common around local optima. In these cases, the

SGD wavers over the vicinity of the minimum rather than moving hesitantly along the trough

toward the local optimum, as shown in Figure 4.

(a) SGD without Momentum (b) SGD with Momentum

Fig. 4: The trajectory of parameter updates using SGD and SGDM. Source: [23]

1) Momentum: Momentum [24] is a method that helps SGD to accelerate and suppress

oscillations in the relevant direction, as seen in Figure 4b. It does this by adding a fraction

γ of the update vector from that past step vt−1 to the current update vector vt. The update rule

of SGD with Momentum (SGDM) can be formulated as:

vt = γvt−1 + η
1

M

∑
∇θℓ

(
fθt−1

(
xt−1
i

)
, yt−1

i

)
OSGDM := θt+1 ← θt − vt

(12)

where t is the current update step, xt−1
i is the sample xi at update step t−1, and the momentum

term γ is usually set to 0.9 or a similar value [17].
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Clearly, Momentum accumulates energy in the small ball go downhill, and releases energy

in the small ball go uphill to help it leave the canyon. Similarly, SGDM can relieve the model

from being trapped by local optima and can find the global optimum faster and better compared

to the traditional SGD.

2) Nesterov Momentum: However, because the update magnitude is not significantly im-

proved, the optimization speed of SGDM is still not satisfactory in the context of deep learning.
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Fig. 5: The visualization of Nesterov Momentum’s update rule. Best viewed in color. Source: [25].

Nesterov accelerated gradient (NAG) [26] is a better type of momentum to accelerate the

optimization process of DNNs. As shown in the Figure 5, SGD with Nesterov Momentum

(SGDNM) can be simply divided into two steps: First make a big jump in the direction of

the previous accumulated gradient. Then measure the gradient where you end up and make a

correction. The update rule of SGDNM can be formulated as:

vt = γvt−1 + η
1

M

∑
∇θℓ

(
fθt−1−γvt−1

(
xt−1
i

)
, yt−1

i

)
OSGDNM := θt+1 ← θt − vt

(13)

where fθt−1−γvt−1 can be viewed as the big jump, and vt is the correction. SGDNM relative to

the traditional SGD update magnitude increase, each step can be analogous to two steps (one

big step and one small step). Therefore, the optimization process of SGDNM is faster and better

than previous optimizers like SGD.

C. AdaGrad and RMSprop

With Momentum and Nesterov Momentum, we are able to address the challenge of SGD

in optimizing deep learning models where DNNs are trapped in local optimal points. On the

other hand, its excellent design also substantially improves the optimization speed. However,
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the challenges about how to adjust learning rate are not addressed, see Section III-A4. In this

subsection, I will introduce two main solutions, namely AdaGrad [27] and RMSprop [25], with

excellent concepts that are consistently used to this day [2], [28].

1) AdaGrad: AdaGrad [27], which stand by Adaptive Gradient, is a subgradient method1

that dynamically incorporate knowledge of the geometry of the data observed in earlier iterations

to perform more informative gradient-based learning. Duchi et al. [27] state that the adaptation

allows us to find needles in haystacks in the form of very predictive but rarely seen features.

Intuitively, as shown in Figure 6, AdaGrad can make the model parameters θ update as soon

as possible along the direction of more stable gradient. Due to simplifying the complex tuning

process of learning rate, many outstanding models in deep learning are trained based on this

optimizer. For example, Dean et al. [30] have found that AdaGrad greatly improved the robustness

of SGD and used it for training large-scale neural nets at Google, which among other things

learned to recognize cats in YouTube videos. Moreover, Pennington et al. [31] used AdaGrad to

train GloVe word embeddings, as infrequent words require much larger updates than frequent

ones.

Fig. 6: The trajectory of parameter updates using AdaGrad. Best viewed in color. Source: [32].

1Note: The subgradient method mentioned here is same with the previous SGD-like methods, and the main reason for terming

the optimizer as a subgradient optimization algorithm in the field of deep learning is to be able to apply to the non-differentiable

functions included in the model. To see more details about subgradient, please refer to [29].
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Moreover, we can formulate and understand AdaGrad again from the point of view of the

parameters rather than the direction of the gradient. We define Gt is the outer product of all

previous subgradients gt,

gt =
1

M

∑
∇θℓ

(
fθt

(
xt
i

)
, yti

)
Gt =

t∑
j=1

gtg
⊤
t .

(14)

Then we can get the standard update rule of AdaGrad,

OAdaGrad := θt+1 ← θt −
ηgt√
Gt + ϵ

(15)

where ϵ is a smoothing term that avoids division by zero (usually on the order of 10−8). And

we expand Equation 15 according to the parameter dimension,

OAdaGrad :=


θ1t+1

θ2t+1

...

θmt+1

←

θ1t

θ2t
...

θmt

−


η√
G

(1,1)
t +ϵ

η√
G

(2,2)
t +ϵ
...
η√

G
(m,m)
t +ϵ


⊙


g1t

g2t
...

gmt

 , (16)

where ⊙ presents matrix multiplication, and G
(j,j)
t is the j element in the Gt diagonal. From the

Equation 16, it is clear that the update rule for AdaGrad adapts the step size for each parameter

j according to η
(
ϵ+G

(j,j)
t

)−1/2

, while standard subgradient methods have fixed step size η for

every parameter.

2) RMSprop: Although AdaGrad adaptively adjusts the learning rate of different parameters

using cumulative squared gradients Gt, Hinton et al. still found its shortcomings. First, the

cumulative squared gradient is monotonically increasing, which can lead to smaller and smaller

learning rates later in the optimization. Second, the update method of the cumulative squared

gradient Gt =
∑t

j=1 gtg
⊤
t makes it inevitably prone to drastic changes in the early stages, which

can have irreversible effects on the parameter optimization.

To address aforementioned issues, RMSprop, which stand for Root Mean Square Propagation,

is proposed by Hinton et al. in Lecture 6e in his Coursera Class [25]. Instead of directly using

cumulative squared gradients Gt to adjust the learning rate, RMSprop divides the learning rate

by an exponentially meaning average (EMA) of squared gradients to achieve a smoother learning

rate adjustment. On the other hand, the cumulative gradient updated by EMA Rt is no longer
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monotonic, solving the problem of decreasing learning rate in the later stages of training. The

update rule of RMSprop can be formulated as:

Rt = µRt−1 + (1− µ) gtg
⊤
t

ORMSprop := θt+1 ← θt −
ηgt√
Rt + ϵ

,
(17)

where the µ is the update term of EMA, and Hinton suggests it to be set 0.9. While a good

default value for the learning rate η is 10−3.

D. Adam

At the end of Lecture 6e in Hinton’s Coursera Class [25], he suggests that the improvement

idea of combining RMSprop and Momentum is possible. Thus, Adam [33] is introduced, an

algorithm for first-order gradient-based optimization of stochastic objective functions, based on

adaptive estimates of lower-order moments. Similarly to Momentum, Adam also has a momentum

term mt and normalizes it using EMA based on the previous Momentum:

mt = β1mt−1 + (1− β1) gt, (18)

where the β1 is the update term of EMA. In addition to that, Adam has a cumulative squared

gradient term vt, which is almost exactly similar to cumulative squared gradients of RMSprop

Rt. And it also is updated by EMA with hyperparameter β2,

vt = β2vt−1 + (1− β2) gtg
⊤
t . (19)

mt and vt are estimates of the first moment (the mean) and the second moment (the uncentered

variance) of the gradients respectively, hence the name of the method [17]. As mt and vt are

initialized as vectors of 0, the authors of Adam observe that they are biased towards zero,

especially during the initial time steps, and especially when the decay rates are small (i.e. β1

and β2 are close to 1). Thus, they counteract these biases by computing bias-corrected first and

second moment estimates:
m̂t =

mt

1− βt
1

,

v̂t =
vt

1− βt
2

.
(20)

Finally, we can get the standard update rule of Adam:

OAdam := θt+1 ← θt −
ηm̂t√
v̂t + ϵ

, (21)

where the default values of 0.9 for β1, 0.999 for β2, and 10−8 for ϵ are proposed by the authors.
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E. Extension and Conclusion

1) Extension: In addition to the classical SGD-like optimizers mentioned above, more than

hundreds of SGD-like optimization methods have been proposed in the field of deep learning in

the past two decades [34]. Some of these methods are also widely known, such as Adadelta [35],

AdamMax [33], Nadam [36], AdamW [28] etc. Of these, all the rest are improved versions of

Adam, except for Adadelta which is about the improvement of AdaGrad. We will briefly introduce

three improvements to Adam, and we will explain the update rule of Adadelta in more detail

due to its specificity.

AdamMax: The authors of Adam regard the vt term in Adam as the ℓ2 norm of the past gradients

and current gradient. Then they find generalize this update to the ℓ∞, models converge to the

more stable. This method is termed as AdamMax [33].

Nadam: We have also seen that Nesterov accelerated gradient (NAG) is superior to vanilla

momentum in Section III-B2. Inspired by this, Nadam (Nesterov-accelerated Adaptive Moment

Estimation) [36] thus combines Adam and NAG, and modify the original momentum term mt.

AdamW: Loshchilov et al. [28] demonstrate L2 regularization and weight decay regularization

are equivalent for standard SGD, but this is not the case for adaptive gradient algorithms, such as

Adam. Thus, AdamW, which decouple the weight decay from the optimization steps, is proposed

to tackle this issue.

Adadelta: First, we define the
√
Rt + ϵ of Equation 17 is the root mean squared (RMS) error

criterion of the gradient,RMS [g]t:

RMS [g]t =
√
Rt + ϵ. (22)

Similarly, we can get the root mean squared error of parameter updates ∆θt:

E
[
∆θ2

]
t
= µE

[
∆θ2

]
t−1

+ (1− µ)∆θ2t

RMS [∆θ]t =
√

E [∆θ2]t + ϵ.
(23)

With them, we can get the standard update rule of Adadelta:

∆θt = −
RMS [∆]t−1

RMS [g]t
gt

θt+1 = θt +∆θt

(24)

Unlike most other adaptive learning rate methods, Adadelta does not require setting any learning

rate, including the initial learning rate, as it has been eliminated from the update rule. For

more details about its theoretical analysis, see Paper [35].
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Fig. 7: Trajectory during Convergence for different SGD-like methods. Best viewed in color.

Source: [37].

2) Conclusion: In summary, RMSprop is an extension of Adagrad that deals with its radically

diminishing learning rates. It is identical to Adadelta, except that Adadelta uses the RMS

of parameter updates in the numerator update rule. Adam, finally, adds bias-correction and

momentum to RMSprop. Insofar, RMSprop, Adadelta, and Adam are very similar algorithms

that do well in similar circumstances. Kingma et al. [33] show that its bias-correction helps

Adam slightly outperform RMSprop towards the end of optimization as gradients become sparser.

Insofar, Adam might be the best overall choice [17].

IV. LOOKAHEAD AND LOOK AHEAD

Although a large number of SGD-like methods address the shortcomings of vanilla SGD in

two ways: a) adaptive learning rate schemes, such as AdaGrad and Adam, and (2) accelerated

schemes, such as Momentum and Nesterov Momentum. However, the scholars concerned did

not stop there and continued their pursuit of a modern optimizer with faster convergence, greater

robustness, and fewer hyperparameters. In this section, we present the new work Lookahead [2]

proposed by Hinton et al. in 2019 and one of the latest directions, the multi-optimizer combi-

nation.



REPORT ABOUT OPTIMIZER 14

Algorithm 1 Lookahead Optimizer:

Require: Initial parameters �0, objective function L
Require: Synchronization period k, slow weights step

size ↵, optimizer A
for t = 1, 2, . . . do

Synchronize parameters ✓t,0  �t�1

for i = 1, 2, . . . , k do
sample minibatch of data d ⇠ D
✓t,i  ✓t,i�1 + A(L, ✓t,i�1, d)

end for
Perform outer update �t  �t�1 +↵(✓t,k��t�1)

end for
return parameters �

Figure 1: (Left) Visualizing Lookahead (k = 10) through a ResNet-32 test accuracy surface at epoch
100 on CIFAR-100. We project the weights onto a plane defined by the first, middle, and last fast
(inner-loop) weights. The fast weights are along the blue dashed path. All points that lie on the plane
are represented as solid, including the entire Lookahead slow weights path (in purple). Lookahead
(middle, bottom right) quickly progresses closer to the minima than SGD (middle, top right) is able
to. (Right) Pseudocode for Lookahead.

2 Method

In this section, we describe the Lookahead algorithm and discuss its properties. Lookahead maintains
a set of slow weights � and fast weights ✓, which get synced with the fast weights every k updates.
The fast weights are updated through applying A, any standard optimization algorithm, to batches of
training examples sampled from the dataset D. After k inner optimizer updates using A, the slow
weights are updated towards the fast weights by linearly interpolating in weight space, ✓ � �. We
denote the slow weights learning rate as ↵. After each slow weights update, the fast weights are reset
to the current slow weights value. Psuedocode is provided in Algorithm 1.1

Standard optimization methods typically require carefully tuned learning rates to prevent oscillation
and slow convergence. This is even more important in the stochastic setting [25, 43]. Lookahead,
however, benefits from a larger learning rate in the inner loop. When oscillating in the high curvature
directions, the fast weights updates make rapid progress along the low curvature directions. The slow
weights help smooth out the oscillations through the parameter interpolation. The combination of
fast weights and slow weights improves learning in high curvature directions, reduces variance, and
enables Lookahead to converge rapidly in practice.

Figure 1 shows the trajectory of both the fast weights and slow weights during the optimization of a
ResNet-32 model on CIFAR-100. While the fast weights explore around the minima, the slow weight
update pushes Lookahead aggressively towards an area of improved test accuracy, a region which
remains unexplored by SGD after 20 updates.

Slow weights trajectory We can characterize the trajectory of the slow weights as an exponential
moving average (EMA) of the final fast weights within each inner-loop, regardless of the inner
optimizer. After k inner-loop steps we have:

�t+1 = �t + ↵(✓t,k � �t) (1)

= ↵[✓t,k + (1� ↵)✓t�1,k + . . . + (1� ↵)t�1✓0,k] + (1� ↵)t�0 (2)

Intuitively, the slow weights heavily utilize recent proposals from the fast weight optimization but
maintain some influence from previous fast weights. We show that this has the effect of reducing
variance in Section 3.1. While a Polyak-style average has further theoretical guarantees, our results
match the claim that “an exponentially-decayed moving average typically works much better in
practice" [25].

1Our open source implementation is available at https://github.com/michaelrzhang/lookahead.

2

Algorithm 1 Lookahead Optimizer:

Require: Initial parameters θ0, cost functionℓ
Require: Synchronization period k, slow weights step size η,

optimizer O
for t = 1, 2, · · · do

Synchronize parameters ϕt,0 ← θt−1

for i = 1, 2, · · · , k do
Sample minibatch of data d ∼ D
ϕti ← ϕt,i−1 +O (ℓ, ϕt,i−1, d)

end for
Perform outer update θt ← θt− 1 + η (ϕt,k − θt−1)

end for
return parameters θ

Fig. 8: (Left) Visualizing Lookahead (k = 10) through a ResNet-32 test accuracy surface at

epoch 100 on CIFAR-100 [38] (an image classification dataset). The authors project the weights

onto a plane defined by the first, middle, and last fast (inner-loop) weights. The fast weights are

along the blue dashed path. All points that lie on the plane are represented as solid, including

the entire Lookahead slow weights path (in purple). Lookahead (middle, bottom right) quickly

progresses closer to the minima than SGD (middle, top right) is able to. (Right) Pseudocode for

Lookahead. Best viewed in color. Source: [2].

A. Lookahead Optimizer: k steps forward, 1 step back

As shown in Figure 8, Hinton et al. revisited the SGD optimization process and found that

its greatest blocking was still hovering around the optimal point and that the optimizer was

more blind without a clearer global direction. Naturally, the authors came up with a Nesterov-

like approach that allows the optimizer to take a big jump first and then correct the direction.

However, unlike Nesterov Momentum, the Lookahead just takes one big jump but generalizes

to k-steps. In addition, the accumulated k-steps are updated as corrected using EMA, from ”big

jump + correction” of Nesterov to ”EMA {big jump, big jump, ...}k”. Algorithm 1 shows the

specific algorithm procedure of Lookahead. Therefore, as shown in Figure 8, Lookahead can see

farther and select the best direction from it, alleviating the blindness of vanilla SGD. Moreover,

Lookahead can easily replace the internal optimizer, unlike Adam adapting Nesterov, which

requires modifying the update steps of Adam [36]. With these features, Lookahead can converge

faster and better than the internal optimizer and is more robust to parameter perturbations.
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Specific experiments can be seen in Figure 9.

Table 3: LSTM training, validation, and test per-
plexity on the Penn Treebank dataset.

OPTIMIZER TRAIN VAL. TEST

SGD 43.62 66.0 63.90
LA(SGD) 35.02 65.10 63.04
ADAM 33.54 61.64 59.33
LA(ADAM) 31.92 60.28 57.72
POLYAK - 61.18 58.79

Table 4: Transformer Base Model trained for
50k steps on WMT English-to-German. “Adam-”
denote Adam without learning rate warm-up.

OPTIMIZER NEWSTEST13 NEWSTEST14

ADAM 24.6 24.6
LA(ADAM) 24.68 24.70
LA(ADAM-) 24.3 24.4
ADAFACTOR 24.17 24.51

(a) CIFAR-10 Train Loss: Different LR (b) CIFAR-10 Train Loss: Different momentum

Figure 8: We fix Lookahead parameters and evaluate on different inner optimizers.

Our NMT experiments further confirms Lookahead improves the robustness of the inner loop
optimizer. We found Lookahead enables a wider range of learning rate {0.02, 0.04, 0.06} choices for
the Transformer model that all converge to similar final losses. Full details are given in Appendix C.4.

5.5 Empirical analysis

Robustness to inner optimization algorithm, k, and ↵ We demonstrate empirically on the CIFAR
dataset that Lookahead consistently delivers fast convergence across different hyperparameter settings.
We fix slow weights step size ↵ = 0.5 and k = 5 and run Lookahead on inner SGD optimizers with
different learning rates and momentum; results are shown in Figure 8. In general, we observe that
Lookahead can train with higher learning rates on the base optimizer with little to no tuning on k and
↵. This agrees with our discussion of variance reduction in Section 3.1. We also evaluate robustness
to the Lookahead hyperparameters by fixing the inner optimizer and evaluating runs with varying
updates k and step size ↵; these results are shown in Figure 9.

Inner loop and outer loop evaluation To get a better understanding of the Lookahead update, we
also plotted the test accuracy for every update on epoch 65 in Figure 10. We found that within each
inner loop the fast weights may lead to substantial degradation in task performance—this reflects
our analysis of the higher variance of the inner loop update in section 3.1. The slow weights step
recovers the outer loop variance and restores the test accuracy.

K
↵ 0.5 0.8

5 78.24 ± .02 78.27 ± .04
10 78.19 ± .22 77.94 ± .22

Table 5: All settings have higher validation accu-
racy than SGD (77.72%)

Figure 9: CIFAR-100 train loss and final test accuracy with various k and ↵.
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Fig. 9: The authors fix Lookahead parameters and evaluate on different inner optimizers.. Best

viewed in color. Source: [2].

B. Multi-optimizer combination

As optimizers are critical to the performances of neural networks, every year a large number

of papers innovating on the subject are published. However, while most of these publications

provide incremental improvements to existing algorithms, they tend to be presented as new

optimizers rather than composable algorithms. Thus, many worthwhile improvements are rarely

seen outside of their initial publication.

Ranger20: Based on this, Wright et al. built Ranger20 [39] in 20192. Ranger20 is a synergistic

optimizer combining RAdam (Rectified Adam) [42] and Lookahead [2], and GC (gradient

centralization) [44] in one optimizer. Their team used the Ranger optimizer in capturing 12

leaderboard records on the FastAI global leaderboards [45].

Ranger21: Moreover, in [1], Wright et al. proposed Ranger21, which combines adamW [28],

Lookahead and seven tricks. The experiments demonstrate that Ranger21 provides significantly

improved validation accuracy and training speed, smoother training curves, and is even able to

train a ResNet50 on ImageNet2012 without Batch Normalization layers.

RangerLars: Inspired by Ranger, Grankin et al. propose RangerLars [46], which combines

RAdam, Lookahead, and LARS [41], to better adapt to the trend of deep learning with big data,

big models, and large-scale training.

2Note: Multi-optimizer combination is one of the state-of-the-art directions in the field of deep learning optimization methods,

and not the only one. There is still a lot of outstanding work exploring how to improve the fundamental SGD-like optimizer,

such as: AmsGrad [40], LARS [41], RAdam [42]. More latest optimizers are available in [43].
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Figure 4: Evolution of the loss and accuracy, using either Adam or Ranger21, when training a Normalizer-Free
ResNet50 convolutional neural network on the ImageNet dataset. The y axis of the loss is displayed in logarithmic scale
while the y axis of the accuracy is in percents. Adam was stopped prematurely at 10 epochs as it was not converging.

Finally, a more general perspective would be the development of a fully modular optimizer architecture (possibly along
the lines of Optax [24]) coupled with a meta-optimizer (such as a combinatorial bandit algorithm [25]) that would pick
and chose the components to build an optimizer tailor-made for a given task.
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C. Future: more optimizer is better?

Lack of theoretical proofs: Despite the excellent experimental results obtained by Lookahead

and some combinatorial-based optimizers, there is a great lack of detailed theoretical proofs.

Zhou et al. prove why the Lookahead works well in [47], but most of the latest optimizers

prefer to use experimental data to prove their effectiveness rather than traditional mathematical

proofs.

How to choose components? The selection of components for the combination seems to

be more of empirical analysis and lacks a criterion. This may lead to subsequent additions of

components that may require extensive experimentation and, similarly, we can not ensure their

general availability.

Better is really better? Sivaprasad et al. propose that the performance of optimizers, particularly

in deep learning, depends considerably on their chosen hyperparameter configuration in [48].

And they argue that a fair assessment of optimizers’ performance must take the computational

cost of hyperparameter tuning into account, i.e., how easy it is to find good hyperparameter

configurations using an automatic hyperparameter search. Thus, the practicality of the optimizer

may be more reliable than its apparent performance. Moreover, this may also explain why in

some of the latest deep learning downstream tasks, there are still many SOTA approaches that
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use SGDs with Momentum to train their models.

V. CONCLUSION

This article aims to help readers briefly understand the development of optimizers in deep

learning, and the design motivation and specific update rules of commonly used optimizers. It

also briefly introduces some recent work in the field. The following conclusions are derived:

• Most of the latest optimizers prefer to use experimental data to prove their effectiveness

rather than traditional mathematical proofs.

• In the case of a small number of tuning parameters, the method with an adaptive learning

rate represented by Adam tends to perform better.

• Tuning parameters are very important for the optimizer, and a well-tuned SGD still performs

well in many downstream tasks.

• An optimizer with detailed theoretical analysis and practicality is a good choice. Apparent

superior performance can be misleading.
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